パスワードを忘れた? アカウント作成
16060 story

次世代太陽電池へ近づく色素増感太陽電池 17

ストーリー by yoosee
コストが下がったら一気に普及したりするかな 部門より

m.sakkanen 曰く、

/.jでも カラフルな太陽電池で話題になった 色素増感太陽電池であるが、 EETimesの記事によれば、 Ohio State UniversityのYiying Wu教授が、 ナノ粒子とナノワイヤーを組み合わせ、表面積を最大化することでフォトンを最大限吸収でき、しかも電子移動度も高い 複合材料を開発したとのことである。

ナノ粒子とナノワイヤーを約10μm厚に成膜した今回試作された太陽電池セルは、 8.6%の変換効率が得られたそうだ。 色素増感太陽電池は既存の多結晶Si太陽電池よりも圧倒的にコストが 安いと言われており、次世代の太陽電池と言われていたわけであるが、変換効率が結晶Si太陽電池の 10~15%に対して低いというのが欠点だった。 今回開発のものはコストが1/4とは言え変換効率が8.6%ということで、主流になるにはまだ早いが、 同教授は数年で大幅に変換効率が上げられるとしており、今のペースであれば色素増感太陽電池が主流になるのも近いのかもしれない。

この議論は賞味期限が切れたので、アーカイブ化されています。 新たにコメントを付けることはできません。
  • Graetzel以降,有機系などを用いた色素増感太陽電池の研究はそこそこ盛んなわけですが,
    以下のような問題があります.

    ・コストが高い
     なんだかんだ言いつつ,実は高効率のセルはルテニウム錯体系色素が多く使われています.
     論文なんかで高効率達成をうたっている場合はまずこれです.でもRuは量も少ないので,
     実際に量産するとなると他の色素を探す必要があります.(もちろんいろいろやられています)

    ・電極が高い
     現在の主流の組み合わせは色素に錯体,これを吸着させて生じたホールを迅速に電極に輸送
     するためにTiO2を使っていますが,TiO2の処理のために高温が必要で,それに耐える透明
     電極ということでITOが使われています.これが高コスト化の要因になるので,対策が必要
     です.(方法が無いわけではない)

    ・ばらつきが大きい
     この手の太陽電池は,作る人/その時の出来によって変換効率に大きなばらつきがあり,倍
     ぐらいの差は平気で出てきます.当然論文にするときは何十個も作ってチャンピオンデータを
     用いますので,どの程度の値で量産できるのかはやってみるまで謎です.良く比較されがちな
     Si系太陽電池で10-15%,色素増感で5-10%といった場合は,前者は工業生産時の実効率,後者
     は手作業で作ったもののチャンピオンデータですので,比較には注意が必要です.(まあ実際
     工業化となると技術者の方々がすごい工夫をしてくれることが多いので,このへんは解決される
     可能性も大きいのですが)

    ・安定性
     一番問題になりそうなのはここか?有機物,しかも光を良く吸収するものに太陽光を当て続け
     るため,光化学反応/電気化学反応により分解する問題がなかなか解決しづらいものとして存在.

    高変換効率を謳った論文の段階ではこれらの問題についてはあまり考慮されていませんので,
    「すぐにも実用化」とか思ってはいけません.現段階はまだ要素技術の積み重ねの段階です.
    実用化は気長に待つ必要があります.
    #結局検討の結果「無理」となる可能性ももちろんあります.
    • by Anonymous Coward on 2007年08月04日 12時49分 (#1200724)
      このごろ表に出てきているわけで … やっと動ける、という話ですからね。

      太陽電池用のシリコンがそろそろ取り合いになってもいますし、悲観材料ばかりではなかろうと思います。製造費用と発電量と耐用年数の話は、もう少し手の内を明かしてくれる所が増えないとなんとも判断しかねます。
      親コメント
    • 太陽光による色落ちで効率激減、てな事はないんでしょうか(笑)。

      すみません、シロートで。
      親コメント
      • >色落ちで効率激減

        それがまさに光化学反応による分解です.
        もともと色素増感太陽電池では,色素分子の電子を光で励起してエネルギーの高い状態に叩き上げ,
        それをすばやく電極が受け取ることで起電力を発します.その後電解質中の分子から電子を受け取る
        ことでイオン化した色素は元に戻るわけです.
        ところが,励起状態というのは安定ではありませんから,場合によってはそのまま色素のどこかの
        結合が切れてしまったり,電解質中の余計な分子と結合してしまったりと,不可逆な変化を示す
        可能性があり,これらの反応が起こってしまうと色素が壊れ起電力(発生電流)は落ちます.

        ですので,いかにこの辺の安定性を高め寿命を延ばすかは大きな問題です.
        親コメント
    • まさにこの通りです。 関係ラボより(笑
  • by Anonymous Coward on 2007年08月04日 14時25分 (#1200766)
    とりあえず、2006年にシャープが効率11.1%を既に報告しています。
    こちらは太陽電池測定の標準機関である産総研でのお墨付きです。
    http://jjap.ipap.jp/link?JJAP/45/L638 [jjap.ipap.jp]
    オハイオ大学内のクラスB程度のソーラーシミュレータで測定した8.6%よりも、
    国内の技術に目を向けてみてもよろしいのではないかと。
  • by Anonymous Coward on 2007年08月04日 15時45分 (#1200797)
  • 日本語の情報 (スコア:2, 参考になる)

    by canashiro (17571) on 2007年08月04日 23時54分 (#1200951) ホームページ 日記
    http://kuroppe.tagen.tohoku.ac.jp/~dsc/ [tohoku.ac.jp]

    日本語でよめるDSC関連技術の情報では、元東北大多元研内田先生のサイトがピカイチだとおもいます。

    個人的には昨年ぐらいまでが大ブームで、今はひと段落したように見えるのですが、これからいよいよ実用化にむけての研究が進んでいくんでしょうか。
    --
    I think I can
  • by Alef_F (27309) on 2007年08月04日 13時36分 (#1200746)
    ファッションとして流行らせて、服が発電するようにするとちょっとはCO2削減になるかな。
  • by e2718 (23583) on 2007年08月04日 13時53分 (#1200750) 日記
    EETimesの記事にも、原著論文のソースが無いので、探してみた
    http://pubs.acs.org/wls/journals/query/query.html?op=refresh&sortSpec=date&docsCount=10&x=24&y=12

    全文手に入らないのでアレだが、記事は以下の論文を元にしているみたい
    http://pubs.acs.org/cgi-bin/sample.cgi/jpcbfk/2006/110/i32/abs/jp063972n.html

    で、Web公開日は一年以上前
    順調に開発進んでいるのか?
  • やっぱりピンク色?
  • by Anonymous Coward on 2007年08月04日 11時49分 (#1200697)
    あと、どれくらい年数の間、効率よく発電してくれるのかも気になります。
typodupeerror

コンピュータは旧約聖書の神に似ている、規則は多く、慈悲は無い -- Joseph Campbell

読み込み中...